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Abstract

We propose a multivariate dynamic intensity peaks-over-threshold model to capture extreme
events in a multivariate time series of returns. The random occurrence of extreme events
exceeding a threshold is modeled based on a multivariate dynamic intensity model allowing
for feedback effects between the individual processes. We propose alternative specifications
of the multivariate intensity process using autoregressive conditional intensity and Hawkes-
type specifications. Likewise, temporal clustering of the size of exceedances is captured by
an autoregressive multiplicative error model based on a generalized Pareto distribution. We
allow for spillovers between both the intensity processes and the process of marks.

The model is applied to jointly model extreme returns in daily returns of three major stock
indices. We find strong empirical support for a temporal clustering of both the occurrence of
extremes and the size of exceedances. Moreover, significant feedback effects between both
types of processes are observed. Backtesting Value-at-Risk and Expected Shortfall forecasts
show that the proposed model does not only produce a good in-sample fit but also reliable
out-of-sample predictions. Evidence for a slightly better out-of-sample performance of an
autoregressive conditional intensity model compared to a Hawkes specification is provided.

Keywords: Extreme value theory, value at risk, expected shortfall, self-exciting point process,
conditional intensity.

JEL classification: C11; C58; C22; F30

1. Introduction

Financial risk management has become an ubiquitous work for banks, companies and financial

institutions, especially during the last subprime crisis. The recent global crises has demonstrated
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the importance of modeling and forecasting of extreme events and their dynamic behavior during

crisis periods. Classical extreme value theory (EVT) consitutes the mathematical and statistical

ground for the description of the distribution of extreme events. Traditional methods to to describe

the tail of a loss distribution are the Value-at-Risk (VaR) and the Expected Shortfall (ES), e.g.,

McNeil & Frey (2000), Cotter & Dowd (2006), Herrera & Schipp (2009), Chavez-Demoulin,

Davison & McNeil (2005) or Chavez-Demoulin, Embrechts & Sardy (2014). On the other hand,

point process methods allow capturing the dynamic behavior of (extreme) events and are typically

applied in the context of portfolio credit risk, market microstructure analysis or jump-diffusion

models, see, e.g., Engle & Russell (1998), Russell (1999), Bauwens & Hautsch (2006), Errais,

Giesecke & Goldberg (2010), Hautsch (2011). Point process theory moreover provides an elegant

formulation of the characterization of the limiting distribution of extreme value distributions1 and

therefore builds a natural complementary framework to extreme value analysis.

In this paper we aim at bringing together both strings of the literature and proposing a dynamic

multivariate model capturing the occurrence and size of extremes in a multivariate time series.

Important features of the proposed framework are to allow for (i) temporal clustering of both

the occurence of extremes and the size thereof, (ii) cross-sectional feedback between individual

exceedance intensities and (iii) feedback between the magnitude of exceedances and their inten-

sity. On the one hand, we introduce an autoregressive conditional intensity peaks-over-threshold

(ACI-POT) model, which in its most basic form corresponds to the combination of two known

models; the ACI model introduced by Russell (1999) and the POT model by Davison & Smith

(1990). Moreover, we propose a multivariate extension of a Hawkes-POT model, introduced for

the univariate case by Chavez-Demoulin et al. (2005) and recently reviewed in different financial

contexts (Chavez-Demoulin & McGill 2012, Herrera 2013).

The major advantage of these new approaches is that they can capture the clustering of extreme

events – both over time and the cross-section. Such patterns typically occur in crisis periods and

substantially challenge risk management. In addition, this class of processes generates a flexible

and computationally tractable multivariate dependence structure, properties that are empirically

well documented, Hall, Hautsch & McCulloch (2003),Bauwens & Hautsch (2009),Hall & Hautsch

(2007),Bowsher (2007),or Hautsch (2011) and references therein.
1The original development of this characterization is due to Pickands (1971) and Smith (1989).
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A further contribution, from a purely empirical perspective, is to discuss some stylized facts

related to the cluster behavior of extreme events on financial markets. To this end, we consider

three well investigated international stock market indexes, the DAX, the S&P 500 and the FTSE

100 index. We show that by means of the multivariate ACI-POT and Hawkes-POT approaches we

can well capture these stylized facts and produce reliable forecasts of Value-at-Risk and Expected

Shortfall.

The remainder of the paper is organized as follows. In Section 2, we discuss some stylized facts

associated to the cluster behavior of extreme events in financial time series. Section 3 summarizes

the concepts in EVT from the view point of point process theory. Section 4 introduces the ACI-

POT and Hawkes-POT model. In Section 5, we illustrate how to apply the proposed models to

produce conditional risk measures, such as the VaR and ES. Section 6 discusses estimation results

and diagnostics based on applications of the proposed models to daily returns of international

stock indices. Section 7 provides VaR and ES in-sample and out-of-sample backtesting results.

Conclusions are given in Section 8.

2. Clustering of Extreme Movements

Clustering of extreme events is recognized as a feature prevailing in most financial time series.

The tendency of very large movements of prices (exceedances over a sufficiently high threshold)

to be clustered through time is one of the major difficulties to obtain reliable risk measures. A

major difficulty is to reliably predict both the size and likelihood of extreme events, e.g., large

losses (BCBS (2012)). In this section, we highlight some stylized facts and motivate the need for

approaches capturing both dynamic and distributional features of extreme events.

2.1. Clustering of Extreme Gains vs. Extreme Losses

A well-known observation is that co-movements in international stock market returns are asym-

metric. In particular, correlations are higher in market downturns than in upturns, and there is a

higher level of clustering for losses than for gains. Numerous studies have examined these styl-

ized facts. For instance, Baur, Dimpfl & Jung (2012) find that lower quantiles exhibit positive
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dependence in past returns, while upper quantiles display negative dependence for the Dow Jones

Stoxx 600 index. Tseng & Li (2011) use different assets and show that larger extreme events tend

to cluster more than smaller ones. Similarly, large losses tend to cumulate together more severely

than large gains. Relating the high level of clustering for losses and gains, Hamidieh, Stoev &

Michailidis (2009) analyze the returns of the S&P 500 index during the period 1960 to 2007 and

show that losses exhibit stronger clustering than gains. Olmo (2005) analyze the DAX index over

the period 1994-2001 and find a higher level of clustering for large losses than for gains. Jondeau

& Rockinger (2003) report evidence of clustering of extremes for a large number of countries,

with difference in the cluster size for positive and negative returns, however, not being statistically

significant.

To illustrate this stylized fact, we consider an (equal-weighted) portfolio based on the DAX,

S&P 500 and FTSE 100 index from 1992 to 2012. A flexible non-parametric tool for capturing

different types of extremal dependence is the extremogram introduced by Davis, Mikosch et al.

(2009), which can be considered as an analog of the autocorrelation function for extreme events.

The extremogram at lag h is defined by

ρAB (h) = lim
x→∞

P
(
x−1Xh ∈ A | x−1X0 ∈ B

)
,

for h = 0, 1, 2, . . ., provided the limit exists for two sets A and B bounded away from 02. Simi-

larly, we can define the cross-extremogram

ρAB (h) = lim
x,y→∞

P
(
y−1Yh ∈ A | x−1X0 ∈ B

)
,

which can be straightforwardly extended to higher dimensions.

For all (cross-) extremograms displayed in this paper, we utilize a stationary bootstrap to con-

struct confidence intervals with block sizes given by an independent geometric distribution with

mean 250, which closely corresponds to the number of yearly trading days. The sampling distribu-

tions of the (cross)-extremogram and confidence intervals are obtained based on 10, 000 bootstrap
2Normally, in univariate time series the choice of the sets is defined by A = B = (1,∞), and thus, the extremogram

corresponds to the upper tail dependence coefficient between X0 and Xh.
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Figure 1: 8.5% of the most extreme losses (top left) and gains (bottom left) for an equal-weighted
portfolio based on the DAX, S&P 500 and FTSE 100 index from 1992 to 2012. The sample
extremograms are shown in the middle figures with losses in the top and gains in the bottom. The
right figures show the cross-extremograms for losses conditional on gains (top right) and gains
conditional on losses (bottom right) at different lags. The dashed line corresponds to the value of
the extremogram under the null hypothesis of independence at a 95% confidence level obtained by
100 permutations. The sampling distribution of the (cross)-extremogram and confidence intervals
are obtained based on 10.000 bootstrap replications.

replications. For a complete discussion and details on the estimation and construction of confi-

dence intervals for extremograms we refer to Davis, Mikosch & Cribben (2012).

Figure 1 displays extremograms and corresponding cross-extremograms. Observe that the

(cross-)extremograms decay hyperbolically at the 95% confidence level of independence as lags

increase, with losses conditional on gains decaying with slowest rate. In addition, the extremogram

of losses and the cross-extremograms for losses conditional on gains show the most significant de-

pendence on many lags. These results are similar to the findings provided by Tseng & Li (2011),

Hamidieh et al. (2009) and Olmo (2005).

2.2. Clustering of Extreme Events Across Time

Besides clustering within a time series, we moreover observe a tendency for clusters of extremes

occuring simultaneously on different markets. An obvious reason for this observation is an in-

creasing market integration, most distinct in the U.S. and in Europe.
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Figure 2: From top to bottom: Time series of 9% of the most extreme losses, the conditional
intensity for the occurrence of losses, the trivariate sample cross-extremograms corresponding to
ρ1 (h) and ρ2 (h), respectively. From left to right for DAX, S&P 500 and FTSE 100 index.

In Figure 2 we display the time series of 9% of the most negative log returns of the three

indices. There seems to be a considerable amount of clustering of extremes across the different

stock markets. The first important cluster can be identified during the late 1990s and early 2000s,

being associated with the Asian financial crisis in 1997 and the end of the Dot-Com crash in

October 2002. The most recent cluster is around the 2008 global financial crisis, starting in 2007

with the Subprime crisis in the US. We moreover, display the trivariate cross-extremograms for the

analyzed returns. For instance, let X,Y and Z be the negative log returns of the DAX, S&P 500

and FTSE 100 index, respectively. Then, the third panel corresponds to the cross-extremogram

ρ1 (h) = lim
x,y,z→∞

P
(
y−1Yh ∈ A ∪ z−1Zh ∈ A | x−1X0 ∈ A

)
, (1)
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with x, y and z being the 0.95 empirical quantiles of the negative log returns and A = (1,∞).

Moreover, in the bottom panel of Figure 2, we display the cross-extremogram

ρ2 (h) = lim
x,y,z→∞

P
(
x−1X0 ∈ A | y−1Yh ∈ A ∪ z−1Zh ∈ A

)
. (2)

Interestingly, there is evidence for both types of cross-extremal dependece among the losses, at

least for one time lag. Studying the co-clustering of extreme events is of vital importance for the

stability of financial systems and implied systemic risk. For instance, Longin & Solnik (2001)

show that for the period 1954 to 2003, the top largest daily extreme returns (positive and negative)

of the S&P500 index tend to appear around the same date, the stock market crash of October 1987.

For a set of European stock markets Poon, Rockinger & Tawn (2004) find that extreme dependence

among these countries is much stronger in bear markets than in bull markets, and that some of this

dependence is related to volatility co-clustering. Byström (2004) shows that the distance between

the fifty most extreme losses for the Swedish index AFF (Affärvärlden’s Generalindex) and the

Dow Jones Industrial Average index during the period 1980 to 1999 occur within the same month

for the half of extremes, while two thirds occur within the same quarter.

The dynamics of such co-clustering of extreme events is readily described by a multivariate

intensity. This is what we try to capture by means of the approaches proposed in this paper. To

motivate the approach, we display the conditional intensities for the occurrence of extreme events

based on a univariate ACI-POT model in the second panel of Figure 2.

2.3. Autocorrelations in Inter-Exceedance Times

The inter-exceedance time is commonly defined as the time interval between consecutive extreme

price events. In this vein, times between price events have been used as a proxy for volatility esti-

mation on the basis of price intensities in high frequency data analysis (e.g. Engle 2000, Gerhard

& Hautsch 2002).

Classical EVT assumes independent and identically distributed (i.i.d) observations. According

to this assumption, the exceedances over a high threshold should behave as a Poisson point process,

impliying that inter-exceedance times should be exponentially distributed. Empirical evidence,

however, clearly contradicts this assumption, making the direct use of this approach questionable.
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Figure 3: QQ-plots for inter-exceedance times, autocorrelation of inter-exceedance times and
sample extremograms for the 9% most extreme losses of DAX, S&P500 and FTSE 100 log returns.

For this reason, a number of new approaches based on the dynamic behavior of inter-exceedance

times or the occurrence times of extreme events have been proposed (e.g. Chavez-Demoulin et al.

2005, Chavez-Demoulin & McGill 2012, Herrera 2013).

Figure 3 shows a quantile-quantile plot (top panel) contrasting the empirical distribution of

inter-exceedances times to an exponential distribution. In all the cases, the exponential distribution

is clearly at odds with empirical observations. Moreover, we report the autocorrelations among

inter-exceedance times, providing evidence for a high degree of autocorrelation in all time series.

Finally, the bottom panel shows univariate empirical extremograms measuring the impact of a

large loss on future realizations on the same stock market. All estimates are highly significant

and thus consistent with earlier findings on the presence of serial extremal dependence on stock

markets (Chavez-Demoulin & McGill 2012, Davis et al. 2012, Chang, Geman, Hsieh & Hwang

2013).
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3. A Point Process Approach to EVT

Consider all negative returns of a given stock market {Zt}t≥1 and suppose in the moment that

all observations are i.i.d and have common distribution function F . If we are interested in the

behavior of the maxima of this sequence Mn = max {Z1, . . . , Zn}, classical EVT tells us that for

given normalizing sequences an > 0, bn ∈ R and n→∞, the limiting distribution of the maxima

P

(
Mn − bn

an
≤ z
)

= Fn (anz + bn) , (3)

converges in distribution to the Generalized Extreme Value (GEV) distribution function

Hξ,µ,σ (z) =

 exp
{
−
(
1 + ξ z−µσ

)−1/ξ
+

}
, ξ 6= 0,

exp
{
− exp

(
− z−µ

σ

)}
, ξ = 0,

where µ and ξ ∈ R, and σ > 0, corresponding to location, shape and scale parameters, respec-

tively3. The convergence in (3) holds if and only if

lim
n→∞

n {1− F (anz + bn)} → − lnHξ,µ,σ (z) .

For these random variables {Zt}t≥1, we record the time tj and the magnitude of an extreme

event Yj = Ztj (the mark), whose size exceeds a given threshold u > 0. I.e., we record the pair

(tj , Yj), in the set Ω = (0, 1] × (u,∞) where for convenience the time has been rescaled to the

interval (0, 1].

According to Pickands (1971), assuming that the losses are i.i.d. and stationary, the two-

dimensional point process defined in a sub-region A = (0, t] × (y,∞) by the counting process

N (A) =
∑

j≥1 1 {tj ≤ t, Yj = y} corresponds to a non-homogenous Poisson process with in-

tensity function

λ (t, y) =


1
σ

(
1 + ξ y−µσ

)−1/ξ−1
+

, ξ 6= 0,

1
σ exp

(
−y−µ

σ

)
, ξ = 0,

(4)

3We define a+ = max (a, 0) for any expression of a.
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where µ and ξ ∈ R, and σ > 0 correspond to the same parameters as in the definition of a GEV

distribution function. Consequently, for a set B = (t1, t2) × (y,∞), with B ⊆ Ω, the intensity

measure or alternatively the mean of the point process in B is defined by

E {N (B)} = Λ (B) =

∫ t2

t1

∫ ∞
y

λ (r, l) dr dl = − (t2 − t1) lnHξ,µ,σ (y) .

A marked point process (MPP) is a stochastic model for the arrival time of events, whose dy-

namic is characterized by marks associated with other stochastic processes. In our context, the

arrival times corresponding to the time whenever a return exceeds a high threshold u > 0 is called

the ground process, while the marks correspond to the magnitude of losses. Formally, a MPP is de-

fined as the right-continuous counting function N (t) := N (0, t] =
∑

j≥1 1 {tj ≤ t, Yj = y} of

the time ordered sequence of marked points {(tj , Yj)}j≥1 in a defined nonempty countable set B.

The internal history or natural filtration of this process is denoted byHt = {(tj , Yj) ∀j : tj < t}.

According to the definition4 of a MPP by Daley & Vere-Jones (2003) the intensity of a marked

point process can be described as

λ (t, y | Ht) = λg (t | Ht) g (y | Ht, t) , (5)

where λg (t | Ht) corresponds to the intensity of the ground process Ng (t) =
∑

j≥1 1 {tj ≤ t}

and g (y | Ht, t) to the marks density function, which is conditional on the history of the process

and the time t of the last event.

Observe that we can rewrite the intensity of the two-dimensional point process approach de-

scribed in (4) in terms of a MPP. On the one hand, the ground process corresponds to

λg (t | Ht) = − lnHξ,µ,σ (u) ,

4Definition 7.3.II in Daley & Vere-Jones (2003).
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which is the rate of a Poisson point process of exceedances above the threshold u5. On the other

hand, the mark density function corresponds to a generalized Pareto density function

gξ,β (y | Ht, t) =


1
β

(
1 + ξ y−uβ

)−1/ξ−1
+

, ξ 6= 0,

1
β exp

(
−y−u

β

)
, ξ = 0,

(6)

where β = σ + ξ (u− µ) is a reparametrized scale parameter. This statistical description is

valid In the case of i.i.d. observations, which, however, is empirically not supported. In order to

address this problem, we will introduce a more flexible framework allowing for dynamics in the

conditional intensity process.

4. Multivariate Intensity Peaks-Over-Threshold Models (MI-POT)

We consider the multidimensional case, i.e., a M−variate MPP, N(t) := (Nm(t))Mm=1, where

each dimension m ∈ {1, . . . ,M} is characterized by a double sequence
{(
tmj , Y

m
j

)}
j≥1

of

random variables in a set B defined on some abstract probability space (Ω,H,P).

In this framework, t denotes the calendar time (the pooled time) and tmj corresponds to the

inter-exceedance time withNg
m (t) being its marginal ground process. In addition, eachm-th com-

ponent of the MPP is linked to an exceedance Y m
j constituting the mark. Therefore, the MI-POT is

specified via a M−variate vector of conditional intensities λ (t, y | Ht) := (λm (t, y | Ht))Mm=1,

where Ht =
{(
tmj , Y

m
j

)
∀ (m, j) : tmj < t, m ∈ {1, . . . ,M}

}
denotes the complete internal

history.

4.1. The multivariate ACI-POT model

In case of the so-called autoregressive conditional intensity (ACI) POT model, the conditional

intensity of the ground process is driven by three main components depending on the history Ht:

a left-continuos dynamic process Φj that is updated instantaneously after the occurrence of tj−1

and does not change until tj , the last observed excess, ymj−1 = ymj−1 − u, capturing the influence

of the size of extreme events on the conditional intensity by means of the parameter δm, and
5Observe that this intensity does not depend on time. For this reason, the two-dimensional point process corresponds

to a non-homogenous Poisson process.

11



λm0 (t) = λm0 (x(t)) corresponding to a baseline intensity that changes continuously in terms of its

own inter-exceedance times xm(t) = tm − tm
Ng
m(t)

, i.e.,

λmg (t | Ht) = exp
(

ΦNg
m(t) + ymNg

m(t)−1δm

)
λm0 (t) . (7)

As proposed by Russell (1999) we specify theM×1 vector Φj :=
(

Φ1
j , . . . ,Φ

M
j

)′
as a VARMA(1,1)

type specification of the form

ΦNg
m(t) =

(
AmεNg

m(t)−1 +BΦNg
m(t)−1

)
zmNg

m(t)−1, (8)

where zmj denotes an indicator variable that takes on the value one if the j-th event of the pooled

process is of type m, and zero otherwise. Am = {am} is a M × 1 coefficient vector denoting the

impact of the innovation εj on the ground intensity of the M -variate processes when the previous

extreme event was of type m, and B = {bmk} corresponds to a M ×M coefficient matrix of

persistence parameters. In addition, the innovation term εj is an i.i.d. exponential random vector

based on the integrated intensity which is computed by piecewise integration

εj :=
M∑
m=1

{
1− Λm

(
tmj−1, t

m
j

)}
zmj , (9)

where Λm
(
tmj−1, t

m
j

)
:=
∫ tmj
tmj−1

λmg (s | Hs) ds is the m-type integrated intensity. This allows the

conditional intensity function varying between extreme event arrivals. Finally, the baseline inten-

sity function λm0 (t) is specified in form of an appropriate hazard function. In this paper we propose

two types of non-monotonous hazard functions. Firstly, the generalized gamma distribution whose

hazard function is defined as

λm0 (t) =
|νm|

(
ν−2m

)ν−2
m

σmxm(t)
∫∞
eνm$m−2 ln νm s

ν−2
m −1e−sds

exp
(
ν−2m (νm$m − exp (νm$m))

)
,

12



with νm 6= 0, and σm, υm > 0. If ηm ∼ Gamma(ν−2m , 1), and $m = ln
(
ν2mηm

)
/νm, then

xm(t) = exp (υm + σm$m) follows the generalized gamma distribution (Prentice (1974)). 6

Secondly, we employ the Burr distribution with hazard function given by

λm0 (t) =

νmσm
υm

(
xm(t)
υm

)σm−1
1 +

(
xm(t)
υm

)σm , νm, σm, υm > 0.

These hazard functions are commonly used in the empirical literature since they both exhibit non-

monotonic behavior.

On the other hand, a key result in EVT, the Pickands-Balkema-de Haan theorem, demonstrates

that the distribution of i.i.d. marks is well approximated by a generalized Pareto distribution

(GPD). Similarly to the arrival processes of extremes, however, the magnitudes of exceedances

far from being i.i.d. We therefore propose a conditional specification for the mark density, with

the size of exceedances following a logarithmic autoregressive conditional process avoiding non-

negativity restrictions of the parameters.

Let ψm
Ng
m(t)

= lnE
(
ym
Ng
m(t)
| Ht

)
be the log of the conditional expectation of ym

Ng
m(t)

=

ym
Ng
m(t)
− um and ϕm

Ng
m(t)

= ψm
Ng
m(t)
− ln(1 − ξm), where ξm ∈ R+ is the shape parameter of

the GPD. We specify the size of the exceedances for each m−component as a multiplicative error

model (MEM) (see Engle 2002) given by

ymNg
m(t) = exp

(
ϕmNg

m(t)

)
εmNg

m(t)

ψkNg
m(t) = wm + ρm ln ymNg

m(t)−1 + βmψ
m
Ng
m(t)−1 + γmx

m
Ng
m(t)−1,

where ρm,βm, γm are parameters, xm
Ng
m(t)−1 is the lagged inter-exceedance time, and εm

Ng
m(t)

are

i.i.d. generalized Pareto random variables with probability density function given by

gξm,1

 ym
Ng
m(t)

exp
(
ϕm
Ng
m(t)

) | Ht, t
 =

(
1 + ξmy

m
Ng
m(t)

)−1/ξm−1
.

6This generalized gamma specification is preferred to the original parameterisation by Stacy (1962) since it is more
numerically stable near to zero.
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The parameter γm captures the effect of the most previous elapsed inter-exceedance time on the

size of the extreme event. If there is an inverse relationship between the size of the last inter-

exceedance time and the size of the exceedances, then γm should be negative. This hypothesis is

highlighted in recent papers (see Santos & Alves 2012, Santos, Alves & Hammoudeh 2013, Ham-

moudeh, Santos & Al-Hassan 2013, Herrera & Schipp 2014). In order to ensure the covariance

stationarity of ln ym
Ng
m(t)−1, |ρm + βm| < 1 must be satisfied. Under this specification, the condi-

tional density of the exceedance ymNg(t) is easily derived as

g
ξm,exp

(
ϕm
N
g
m(t)

) (ymNg
m(t) | Ht, t

)
=

1

exp
(
ϕm
Ng
m(t)

)
1 + ξm

ym
Ng
m(t)
− um

exp
(
ϕm
Ng
m(t)

)
−1/ξm−1 , (10)

which corresponds to a generalized Pareto density with time-varying scale parameter exp
(
ϕm
Ng
m(t)

)
.

Replacing the parametrization for the ground process and the marks density function in (5) by the

ACI approach (7) and the MEM specification (10) for the marks density, we obtain the multivariate

ACI-POT model with the m-th component given by

λm (t, y | Ht) =
exp

(
ΦNg

m(t) + ym
Ng
m(t)−1δm

)
λm0 (t)

exp(ϕm
Ng
m(t)

)

1 + ξm
ym
Ng
m(t)
− um

exp
(
ϕm
Ng
m(t)

)
−1/ξm−1 . (11)

The stationary of the ACI-POT model is ensured if the eigenvalues of the persistence matrix B in

(8) lie inside the unit circle, which is equivalent to a spectral radius of the persistence matrix less

than one, i.e., Spr (B) = max {|ϕ| : det (B − ϕI) = 0} < 1, where ϕi are the eigenvalues of B.

Finally, suppose that we observe the process over the time interval (0, T ], the log-likelihood

for the ACI-POT model based on the multivariate time series Y is given by

lnL (t, y | Ht; θ1, θ2) =

M∑
m=1

Ng
m(T )∑
j=1

ln gξm,exp(ϕmj )
(
ymj | Ht, t; θ1

)
(12)

+
M∑
m=1

Ng
m(T )∑
j=1

{
zmj lnλmg (tj | Ht; θ2)−

∫ tmj

tmj−1

λmg (s | Hs; θ2) ds

}
,

where θ1, θ2 and θ1 denote corresponding parameter sets.
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4.2. The Multivariate Hawkes POT Model

The Hawkes process is a self-exciting point process originally introduced by Hawkes (1971). This

class of process has wide applications in many different fields, primarily in seismology (Hawkes &

Oakes 1974, Ogata 1988) and more recently in finance, e.g., (Bowsher 2007, Dassios, Zhao et al.

2011, Embrechts, Liniger, Lin et al. 2011, Bacry, Dayri & Muzy 2012, Bacry, Delattre, Hoffmann

& Muzy 2013). In the context of EVT, an univariate Hawkes POT process was introduced by

Chavez-Demoulin et al. (2005) and more recently reviewed in Chavez-Demoulin & McGill (2012).

The ground process for them-th component is defined in terms of occurrence times of extremes

events, i.e.,

λmg (t | Ht) = µm +

M∑
k=1

bmk

Ng
m(t)∑
j=1

hmk

(
t− tkj

)
. (13)

Under this specification, µm > 0 corresponds to the immigrant rate or baseline intensity and

follows a Poisson process, h : R → R+ is a decay kernel describing the instantaneous influence

of the k-th component, and how this deviates from the baseline µm through the time. Finally, the

parameters b > 0 are coefficients defining the M ×M branching matrix B = {bmk}. Stationarity

of the process is ensured if the spectral radius of B being strictly less than 1. In this paper, the

decay kernel function is assumed to be exponential

hmk

(
t− tkj

)
= amk exp

(
δmy

k
j − amk

(
t− tkj

))
,

with amk > 0 and δm ≥ 0.

The influence of the size of extreme events on their intensity is captured by the parameter δm.

Hence, the ground intensity of the next extreme event depends on the time elapsed since the last

event but also on the size of the latter (captured by δm).

As in the ACI-POT model, we specify the size of the exceedances for each m-th component

based on a MEM model based on a conditional generalized Pareto density function as in (10).

Replacing the parametrization for the ground process and the marks density function in (5) by the

15



Hawkes model defined in (13) and the MEM specification (10) for the marks density, we obtain

the multivariate Hawkes-POT model

λm (t, y | Ht) =
µm +

∑M
k=1 bmk

∑Ng
m(t)

j=1 amk exp
(
δmky

k
j − amk

(
t− tkj

))
exp

(
ϕm
Ng
m(t)

)
1 + ξm

ym
Ng
m(t)
− um

exp
(
ϕm
Ng
m(t)

)
−1/ξm−1 .

(14)

The log-likelihood is then given by

lnL (t, y | Ht; θ1, θ2) =
M∑
m=1

Ng
m(T )∑
j=1

ln gm
ξm,exp(ϕmj )

(
ymj | Ht, t; θ1

)

+

M∑
m=1


Ng
m(T )∑
j=1

lnλmg (tj | Ht; θ2)−
T∫
0

λmg (s | Hs; θ2) ds

 ,

where θ1, θ2 and θ1 denote corresponding parameter sets.

Note that the parameters associated with the two models for intensities and marks are disjoint

which allows us to estimate them separately.

5. Improving conditional risk measures

The Basel Committee on Banking Supervision has proposed using ES instead of VaR as an in-

ternal model-based approach for regulatory market risk capital, mainly because of the inability of

VaR to capture tail risk (see BCBS 2012, BCBS 2013). However, Gneiting (2011) demonstrate

that, though ES is a coherent risk measure (Artzner, Delbaen, Eber & Heath 1999) and is able to

capture tail risk, it does not satisfy the requirement of elicitability. I.e., it cannot be straightfor-

wardly backtested. The virtues and limitations of both risk measures have forced regulators and

practitioners to adopt one of them, and therefore, the features of coherence or elicitability. In this

paper, we show the derivation of both risk measures based on the proposed MI-POT model.

Let us consider all losses {Yt}t≥1 with cumulative distribution function F . For ease of exposi-

tion, we omit the superscriptm. ES is estimated by firstly obtaining the VaR at confidence level α,
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which is equivalent to estimating the predictive distribution (FYt+1|Ht
(
yt+1
α

)
) for the returns over

the next period

yt+1
α = F−1Yt+1|Ht (α) := V aRt+1

α .

We compute 1− FYt+1|Ht (y) as

F Yt+1|Ht (y) = P (Yt+1 > y | Ht)

= P (Yt+1 > u | Ht)P (Yt+1 > y + u | Yt+1 > u,Ht) .

The probability P (Yit+1 > u | Ht) can be calculated as

P (Ng (t+ 1)−Ng(t) > 0 | Ht) = 1− exp

(
−
∫ t+1

t
λg (s | Hs) ds

)
,

≈ λg (t | Ht) ,

where the last result is obtained by using the asymptotic identity ln (x) ≈ x − 1 as x → 1. The

conditional probability of exceedances is computed as

P (Yt+1 > y + u | Yt+1 > u,Ht) =

∫ t+1
t

∫∞
y+u λ (s, l | Hs) dsdl∫ t+1

t

∫∞
u λ (s, l | Hs) dsdl

= 1−

(
1 + ξ

y − u
exp

(
ϕNg(t)

))−1/ξ := Gξ,exp(ϕNg(t)) (y | Ht, t) ,

where Gξ,exp(ϕNg(t)) denotes the conditional generalized Pareto distribution survival function.

Finally, the VaR is defined in terms of the quantile yt+1
α with P

(
Yt+1 > yt+1

α | Ht
)

= 1 − α.

implying

V aRt+1
α = u+

exp
(
ϕNg(t)

)
ξ

{(
1− α

λg (t | Ht)

)−ξ
− 1

}
.
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From this result, the associated conditional ES is calculated by observing that the conditional

distribution of extreme events above the VaR given the historyHt is

ESt+1
α =

1

1− α

∫ 1

α
V aRt+1

s ds =
V aRt+1

α

1− ξ
+

exp
(
ϕNg(t)

)
− ξu

1− ξ
. (15)

Finally, observe that

lim
α→1

ESt+1
α

V aRt+1
α

=
1

1− ξ
, (16)

with the limit not depending on time.

Recently, the Basel Committee citeBasel2013 proposes to replace the VaR at the 0.99 con-

fidence level in internal model-based approaches with ES evaluated at 0.975 confidence level.

According to the Basel Committee, ES is less sensitivity to extreme events, and therefore, should

account for the tail risk in a more comprehensive form. We analyze this proposition in the next

section.

6. Applications

6.1. Empirical Setting

We employ DAX, S&P 500 and FTSE 100 index log returns through the sample period from

January 2, 1992 to December 31, 2012 covering 4,884 trading days. The first application is based

on a bivariate model for the analysis of the clustering of extreme losses and gains of an equally-

weighted portfolio based on these indexes. The second application considers a trivariate model to

jointly model negative log-returns of the three indexes.

To determine the tail threshold u, we follow the statistic proposed by Reiss & Thomas (2007)

to determine the number of exceedances k by

arg min
k
f(k) =

1

k

k∑
i=1

iβ
∣∣∣ξ̂i −median

(
ξ̂1, . . . , ξ̂k

)∣∣∣ ,
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Figure 4: Results for the threshold selection for the bivariate application. The left panel shows the
results of the statistic for losses, while the rigth panel displays the results for gains of the portfolio.
The gray rectangle shows the subset that seems to be more stable for the shape parameter (x-axis)
for different tuning parameters β (y-axis).

where ξ̂i is the estimate of the shape parameter for the sample fraction of extremes above upper

order statistic i, and β ∈ [0, 0.5] is a tuning parameter. The idea is to find that sample proportion

for which the distribution of the shape parameters is stable. Figure 4 displays the corresponding

results. We observe that a proportion between 395 and 445 observations for gains and losses seems

to be a satisfactory size. We choose working with 420 observations, corresponding to 8.5% of the

most extreme events for losses and gains. For the trivariate case, we determine a threshold of 9%

as a reasonable choice.

6.2. Empirical results

Modeling Extreme Gains and Losses

Table 1 in the Appendix displays the estimation results for both the ACI-POT and Hawkes-POT

specification. In Figure 5, we plot the corresponding estimates of the conditional intensity of the

ground processes of positive and negative log returns, respectively, based on both the Hawkes-

POT and ACI-POT model with generalized gamma and Burr baseline function, respectively. The

bottom panel shows a barcode plot, where the bars color in black or gray indicate those log returns

that cause extreme observations.
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The best fit is achieved for an ACI-POT model with generalized gamma baseline function,

though the difference to a specification based on a Burr baseline function is small. For both

ACI-POT models, we find evidence for spill-over effects between positive and negative extreme

observations, as captured by the persistence matrix B. Note that the persistent coefficient asso-

ciated with negative extreme events (b22 = 0.652) is larger than that for positive extreme events

(b11 = 0.499), which indicates that the extent of clustering of extremes tends to be larger for

extreme losses. Moreover, the off-diagonal persistence coefficients reveal that negative extreme

events cause more frequently positive extreme events than vice versa (b21 > b12). Finally, for the

ACI-POT models, we also find evidence for spill-overs in the innovations, as reflected by large am

coefficients.

Similarly, the estimates of the Hawkes-POT model reveal evidence for spill-over effects be-

tween negative and positive returns and a clustering of extreme events. The estimated persistence

matrixB indicates that negative extreme events are more likely to be followed by another negative

event (b22 = 0.547) than by a positive extreme event (b12 = 0.537).

Overall, our estimates strongly support an obvious asymmetry between positive and negative

extreme returns, as discussed in Section 2. This is in line with the the overreaction hypothesis

in behavioral finance (Bondt & Thaler (1985), Bondt & Thaler (1987)), predicting that negative

extreme observations in stock prices yield positive extreme returns to correct the overreaction of

the market. We moreover find strong evidence for the conditional intensity of the ground process

in both MI-POT approaches exhibiting a marked cross-sectional interdependence. This result is

consistent with several previous studies (, Longin & Solnik 2001, Poon et al. 2004, Byström 2004)

which emphasize this cross-effect.

The estimates of the MEM specification for the magnitude of marks provide clear evidence

for a clustering of the size of exceedances. Hence, small (large) exceedances are likely to be

followed by small (large) exceedances. The coefficients γm, moreover, are both negative and

strongly significant, indicating that long lagged inter-exceedance times imply a reduction of the

expected size of marks. This is in agreement with the hypothesis put forward by Santos & Alves

(2012).
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Figure 5: Bivariate conditional intensity of the ground process for the analyzed index portfolio.
The first three panels from top to down show the estimated conditional intensity of the ground
processes for positive log-returns, while the following three panels exhibit the conditional intensity
of the ground processes for negative log-returns. The underlying models are the Hawkes-POT and
ACI-POT specification with a generalized gamma and Burr baseline function, respectively. The
bottom panel displays a barcode plot, where the black or gray colors indicate the log returns
causing the extreme observation.
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Residual diagnostic tests for the MI-POT approach are based on the de-meaned integrated

intensities of the ground process (εj = 1−
∫ tmj
tmj−1

λmg (s | Hs) ds), which, according to the random

change theorem, should be i.i.d. standard exponentially distributed with mean zero. Accordingly,

the test for excess dispersion of Engle & Russell (1998) is
√
nε/8σ̃

2
ε , where nε corresponds to

the number of residuals and σ̃ε is the empirical standard deviation of the residuals series. Under

correct model specification, the test test statistic is asymptotically normally distributed.

We observe that the residuals are on average close to zero, with standard deviations being

not far from unity. Moreover, according to Ljung-Box statistics, the assumption of independence

cannot be rejected indicating that the model is able to capture the dynamics in the data pretty well.

The test on excess dispersion, however, reveals slight evidence for overdispersion, indicating that

both approaches are still not sufficiently flexible to capture the distributional properties of inter-

exceedance times.

Modeling Cross-Sectional Spillovers in Extremes

Table 2 gives the estimation results based on trivariate MI-POT models for extremes in DAX,

S&P500 and FTSE100 returns. The best-fitting specification is the ACI-POT model with general-

ized gamma baseline function. It turns out that the flexible parametrization of the ground process

in the ACI-POT specification compared to the Hawkes-POT specification significantly improves

the explanatory power.

In case of the ACI-POT models, the ground process is pretty persistent with relatively low in-

novations coefficients and pretty high persistence parameters. All persistence parameters are sig-

nificant and support stationarity of the underlying process. In both ACI-POT models, the baseline

functions show a non-monotonic shape of bathtub or inverted U-shaped form. We moreover find

the influence of the exceedance size on the conditional intensity of the ground process, captured

by the coefficient δm, being significant in both ACI-POT specifications. Hence, extreme events in

one series increase the conditional intensity for the next extreme event in the same series, but also

in the other series. This result is in line with the estimates of the trivariate sample extremograms in

Figure (2) and with previous studies of extreme dependence in international stock markets (Poon,
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Rockinger & Tawn (2003), Baltzer, Cappiello, Santis & Manganelli (2008), Herrera & Eichler

(2011)).

The estimates of the Hawkes-POT model support these findings. The flexibility of the Hawkes-

POT model allows us, moreover, to capture even the influence of the size of each loss on the

intensity of each ground process. In the dynamic specification for the marks we find a strong

persistence with coefficients βm < 1. Hence, exceedance sizes are clearly autocorrelated and,

moreover, depend negatively on the length of past inter-exceedance waiting times, as reflected by

the coefficient γm.

As in the bivariate model above, residual diagnostics reveal that both MI-POT specifications

capture the distributional and dynamic features in the underlying series sufficiently well.

7. MI-POT Based VaR and ES Forecasting

7.1. Backtesting

To assess the predictive performance of MI-POT models, we evaluate the accuracy of the VaR,

first, in-sample, and then in terms of out-of-sample backtesting procedures. To this end, we utilize

a battery of tests proposed in the literature, which are described in details in Herrera & Schipp

(2013). The first three test are based on a Markov chain type model with two states as introduced

in Christoffersen (1998), corresponding to an unconditional coverage test (LRuc), a test of inde-

pendence of failures (LRind) and a conditional coverage test (LRcc), which is a combination of

the last two tests. Moreover, we implement the dynamic quantile tests proposed by Engle & Man-

ganelli (2004) building on linear regression settings. The first is the dynamic quantile hit (DQhit)

test, where the regressors are the lagged de-meaned hits of failures, while the dynamic quantile

VaR (DQV aR) test uses in addition contemporaneous VaR estimates. Finally, we employ the mea-

sure V ES evaluating the difference between the predicted ES (ÊS
t
α) and the observed return (Rt)

at time t, given that this return has exceeded the actual VaR, i.e.,

V ES =

∑T
t=0

(
Rt − (−ÊStα)

)
1{

Rt<− ˆV aR
t+1
α

}∑T
t=0 1

{
Rt<− ˆV aR

t+1
α

} .
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This statistic is close to zero if the model is appropriate (Embrechts, Kaufmann & Patie (2005)).

However, its weakness is that it depends on the accuracy of the VaR estimates, since only returns

below the VaR are taken into account.

Emmer, Kratz & Tasche (2013) propose a framework to backtest ES based on a representation

in terms of integrated VaRs

ESt+1
α =

1

1− α

∫ 1

α
V aRt+1

s ds (17)

≈ 1

4

[
V aRt+1

α + V aRt+1
0.75α+0.25 + V aRt+1

0.5α+0.5 + V aRt+1
0.25α+0.75

]
.

This allows making use of backtesting techniques developed for VaR and as described above.

Accuracy of MI-POT Based Risk Forecasts

To assess the accuracy of both approaches to estimate and predict the VaR and ES at different

confidence levels, we adopt the following procedure: The parameters of the three models are

estimated using the sample from January 2, 1992 to December 31, 2012. The parameters of the

models are then used to compute one-day-ahead forecasts of the 99%-VaR and 97.5%- ES in the

forecast period January 2, 2013 to December 31, 2013.7 Note that the model parameters are not

re-estimated each trading day since the additional information obtained from the forecast sample

is negligible compared to the sample period data and results would only change very mildly.

Table 3 gives the test outcomes for the VaR and ES estimations in-sample and out-sample

for the trivariate MI-POT models jointly modeling extremes in all three index series. Note that we

need to estimate the VaR confidence levels (0.975, 0.98125, 0.9875, 0.99375) in order to make use

of the integral representation (17) allowing to backtest the ES at the 97.5% level. For comparison

purposes we also report the VaR at 0.99 level for comparison purposes.

According to the test outcomes, the specification providing the most accurate in-sample fit is

the Hawkes-POT model. A slightly worse performance is observed for the ACI-POT models indi-

cating some evidence for a minor over-estimation of risk at this confidence level. These findings
7The Basel Committee (see BCBS (2013)) recommends changing the risk-based capital framework building on

99%-VaR to 97.5%-ES. These confidence levels are used in our empirical analysis.
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Figure 6: From top to bottom: estimated 99%-VaR (gray line) and 97.5% ES (black line) for
the trivariate ACI-POT model with Burr hazard function, applied to negative log returns of the
FTSE 100, DAX and S&P 500 indexes. In-sample period: January 2, 1992 to December 31, 2012.
Out-of-sample period: January 2, 2013 to December 31, 2013 (marked by dark background). The
bottom panel shows a barcode plot with light colors indicating extreme events in the FTSE 100,
DAX, or S&P 500 and the the middle dark colors indicating a simultaneous extreme event in any
pair of negative log returns. The dark black color marks a simultaneous extreme event in all three
negative log return series.
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are supported by the statistic V ES , revealing the best performance for the Hawkes-POT model

(with a mean of V ES = 1.09 × 10−4) for the chosen confidence level. The ACI-POT models

performs marginally weaker (with V ES = 1.17×10−4 and V ES = 1.20×10−4 for the ACI-POT

model with generalized gamma and Burr baselines, respectively).

Figures 6, 7 and 8 display the estimated VaR and ES times series based on the two types of

ACI-POT specifications (using a Burr and generalized gamma baseline function, respectively) and

the Hawkes-POT model, respectively. The figures also show barcodes visualizing to which extent

extremes occur individually or jointly in the three series. We observe the highest estimates of VaR

and ES in all series during the years 2000-2002. During this period, the three stock market indices

experienced large losses due mainly to the Dot-Com crash, and the aftermath of 9/11 terrorist

attacks. After this period, the level of extreme risks declined until the subprime crisis in 2007 fol-

lowed by the global crisis in 2008/9. We note that most of the extreme events do not occur exactly

on the same day8. In fact, only the S&P 500 losses exhibit simultaneities with extreme events in

other return series on the same day. Specifically, 169 of 441 losses occur simultaneously with the

DAX and 14 of 441 losses with the FTSE100. Only one extreme event happens simultaneously in

DAX and FTSE100 returns, and only one extreme event occurs simultaneously on all three stock

markets.

The backtesting results displayed in Table 3 indicate a quite good performance of both types

of MI-POT models. Based on the ACI-POT models most of the confidence levels are correctly

estimated. Based on the Hawkes-POT approach, however, two of the VaR confidence levels for

DAX returns are overestimated. These results suggest that Hawkes-POT models might have the

tendency to overfit in-sample but slightly underperform out-of-sample. Therefore, working with

ACI-POT models is slightly preferable in a backtesting context. In fact, the Hawkes-POT model

tends to give estimates for the VaR and ES slightly larger than the ACI-POT models, which is also

reflected in the measure V ES .

Finally, we analyze the difference between the predicted 99%-VaR and 97.5%-ES based on

both approaches. From a theoretical point of view, the ratio between both measures should be

close to ES0.975/V aR0.99 ≈ 0.4ξ/(1 − ξ) 9. Since for all return series analyzed ξ > 0, the ratio

8For the DAX, S&P500 and FTSE100 we observe 269, 257 and 425 extreme events, respectively
9Observe that V aR0.975

V aR0.99
≈ 0.4ξ and from 16 we know that ES0.975

V aR0.975
≈ 1

1−ξ .
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Figure 7: From top to bottom: estimated 99%-VaR (gray line) and 97.5% ES (black line) for
the trivariate ACI-POT model with generalized gamma hazard function, applied to the negative
log returns of the FTSE 100, DAX and S&P 500 indexes. In-sample period: January 2, 1992 to
December 31, 2012. Out-of-sample period: January 2, 2013 to December 31, 2013 (marked by
dark background). The bottom panel shows a barcode plot with light colors indicating extreme
events in the FTSE 100, DAX, or S&P 500 and the the middle dark colors indicating a simultane-
ous extreme event in any pair of negative log returns. The dark black color marks a simultaneous
extreme event in all three negative log return series.
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Figure 8: From top to bottom: estimated 99%-VaR (gray line) and 97.5% ES (black line) for the
trivariate Hawkes-POT model, applied to the negative log returns of the FTSE 100, DAX and S&P
500 indexes. In-sample period: January 2, 1992 to December 31, 2012. Out-of-sample period:
January 2, 2013 to December 31, 2013 (marked by dark background). The bottom panel shows
a barcode plot with light colors indicating extreme events in the FTSE 100, DAX, or S&P 500
and the the middle dark colors indicating a simultaneous extreme event in any pair of negative log
returns. The dark black color marks a simultaneous extreme event in all three negative log return
series.
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should be then higher than one. Table 4 reports the time series average (in-sample and backtesting

periods) of this ratio for all models and return series. The results indicate that the ratios are nearly

identical for both approaches, but are slightly higher in case of the ACI-POT model.

8. Conclusions

We propose a multivariate dynamic intensity model to jointly model the occurrence of extreme

observations (exceeding a threshold) in a multivariate time series of log returns. The event arrival

is modeled as a marked point process where the marks are associated with the magnitude of (loss)

exceedances. The major feature of the model is to allow for clustering of the arrival of extremes

over both time and the cross-section and clustering of the size of exceedances. This is achieved by

combining a multivariate dynamic intensity process (autoregressive conditional intensity process

or Hawkes process) with a multiplicative error model based on a generalized Pareto distribution for

the magnitude of exceedances. Both components are linked to allow for feedback effects between

the arrival intensity of extremes and the size of exceedances above a threshold.

Empirical evidence based on return series of the DAX, S&P500 and FTSE100 index provides

strong support for the model. We find significant evidence for (co-)cluster structures in extreme

stock market losses which are well captured by the proposed model. We moreover show that the

new model yields a good out-of-sample backtesting performance if it is applied to prediction of

Value-at-Risk and Expected Shortfall.

We see it as a major advantage of the proposed framework that it can be easily extended in

various directions and – in dependence of the chosen specification – is also tractable in higher

dimensions. Consequently, it might be use as a valuable framework to analyze, for instance,

systemic risk and to analyze tail dependencies.
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A. Figures and Tables

Model ACI-POT ACI-POT Hawkes-POT
Distribution (G. gamma) (Burr)

Log-return m gains losses gains losses gains losses
par (s.e) par (s.e) par (s.e) par (s.e) par (s.e) par (s.e)

Ground process
am 1.085 (0.216) 2.550 (0.345) 0.986 (0.200) 2.576 (0.320) µm 0.007 (0.684) 0.018 (0.352)
b1m 0.499 (0.105) 0.161 (0.085) 0.531 (0.088) 0.166 (0.089) b1m 0.306 (0.291) 0.537 (0.182)
b2m 0.267 (0.046) 0.652 (0.049) 0.230 (0.038) 0.665 (0.048) b2m 0.175 (0.866) 0.547 (0.176)
υ1m 1.245 (0.105) 2.637 (0.186) 1.646 (0.192) 12.745 (72.714) a1m 0.009 (0.352) 0.053 (0.204)
σ1m 0.835 (0.103) 1.795 (0.486) 0.464 (0.083) 0.191 (0.036) a2m 0.001 (2.518) 0.041 (0.246)
v1m -1.142 (0.289) -0.986 (0.889) -1.804 (0.267) 5.408 (87.981) δ1m 0.001< (1.1E+05) 20.280 (0.416)
δm 2.871 (4.321) 17.402 (5.209) 2.133 (4.364) 16.864 (5.254) δ2m 0.001< (1.5E+03) 20.486 (0.429)

Diagnostics
LL1 -2824.992 -2841.732 -2889.962
Spr 0.796 0.804 0.756

Residuals
Mean (εm) -0.034 0.005 -0.045 0.003 0.187 0.271

σ̃ε 0.871 1.076 0.873 1.155 0.591 0.791
Excess.dis -1.841 1.185 -1.808 2.502 -4.967 -2.731
LBε(5) 0.000 0.957 0.000 0.993 0.854 0.243

Mark process
wm -0.391 (0.208) -0.647 (0.206)
ρm 0.090 (0.024) 0.084 (0.020)
βm 0.820 (0.059) 0.761 (0.053)
γm -0.003 (0.002) -0.005 (0.002)
ξm 0.088 (0.046) 0.005 (0.050)

Diagnostics
LL2 1829.263 1704.919

Table 1: Estimates of the bivariate MI-POT models used for the analysis of the cluster behavior
for extreme events of losses and gains of a portfolio based on the log-returns of the FTSE 100,
DAX and S&P 500 indeces from January 2, 1992 to December 31, 2012. Standard errors are in
parenthesis. LL1corresponds to the log-likelihood of the ACI or Hawkes part, while LL2 to the
POT part. The Akaike Information Criterion for the models are AIC-POT (generalized gamma)=
-1370, ACI-POT (burr)=-1337, Hawkes-POT =-1240. Spr : Spectral radius of the persistence
matrix. Mean (εm): mean of residuals, σ̃ε standard deviation of the residuals, LBε(5): Ljung-Box
statistic, Excess.dis: excess dispersion test.
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ACI-POT ACI-POT
Hawkes-POT Theoretical

(G. gamma) (Burr)
FTSE 1.017 1.023 1.014 1.001
DAX 1.024 1.023 1.020 1.001

S&P500 1.049 1.067 1.033 1.005

Table 4: Ration between both measures of risk for both approaches (ES0.975/V aR0.99) using the
mean of these risk measures for the whole period (in-sample and backtesting periods).
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