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Abstract

This paper proposes a novel test for the volatility contagion on the eq-

uity markets. I decompose variance risk premia into their tail and non-tail

risk components for three major stock indices and I analyse their cross

market correlations. I �nd that tail-risk premia exhibit higher correlations

than the non-tail risk premia, implying the existence of volatility conta-

gion. This result holds, even when allowing for time varying correlations.

Moreover I document that tail-premia constitute a large portion of the

overall premia, highlighting even more the importance of tail-risks.

Unlike the existing literature, my approach to testing the existence of

volatility contagion does not rely on short periods of �nancial distress.

The decomposition allows to gauge the tail risk premia also in tranquil

times.
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1 Introduction

The Great Recession highlighted once more the importance of market conta-
gion, both for policy makers and for the �nancial industry. Events following
the collapse of the Lehman Brothers especially underlined the issue of market
uncertainty contagion.1 This type of contagion might be present across di�er-
ent asset classes as well as across di�erent markets. Surprisingly there is no
consensus whether contagion actually exists or not.2

Throughout this study, following Forbes and Rigobon (2002), I will de�ne
contagion as an increase in cross market correlation3 during periods of distress.

∗Bank of England and European University Institute, marek.raczko@eui.eu
1Due to sharp rise of market uncertainty the inter-bank market became dysfunctional,

threatening even larger liquidity and bank insolvency crisis.
2Economists cannot even agree on a common de�nition of economic contagion (for a dis-

cussion see Forbes and Rigobon, 2001).
3Traditionally correlation of stock market indices or asset prices were analyzed, but in this

study I focus on the co-movement of volatilities of major stock market indices.
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This de�nition is very strict, yet it has an important merit, it leads directly to
a simple econometric test of the contagion hypothesis � simply through testing
the switch in the strength of this correlation.

This type of market contagion has been thoroughly studied across di�erent
countries and across di�erent asset classes. Starting with the seminal paper
of King and Wadhwani (1990) and followed by others (see for example Longin
and Solnik, 1995), economists found evidence supporting the market contagion
hypothesis. On the other hand the studies of Forbes and Rigobon (2002) and
Longin and Solnik (2001) claimed that after correcting for estimator bias there
is no evidence for market contagion. Finally, Corsetti et al. (2005) showed that
even after correcting for estimator biases one cannot reach a sound conclusion
on the contagion hypothesis.

All the afore mentioned articles focus on the correlation of returns of key
market indices or selected assets. Only recently economists started studying
the issue of market risk contagion, by looking directly at realized (Diebold and
Yimaz, 2009) or both realized and implied volatilities of stock market indices
(Cipollini et al. 2013). Those studies provide support for the presence of volatil-
ity contagion during periods of �nancial stress.

The current literature on economic contagion focuses on testing for the exis-
tence of a structural break in correlation during the period of �nancial turmoil.
This is somewhat di�cult as the periods of turmoil are usually very short and
consequently span only a small portion of the observed sample (Dungey and
Zhumabekova, 2001). Moreover the exact choice of dates for the �nancial tur-
moil �regime� might also lead to inconsistent or ine�cient estimates (Rigobon,
2004).

In this study I suggest a novel approach to test for the contagion hypothesis
that circumvents these problems. Instead of analyzing periods of turmoil and
comparing them to the tranquil periods, I look directly at the correlations of
market pricing of the crash and non-crash risk. More precisely I decompose
Variance Risk Premia4 into premia atributed to crash and non-crash states. I
modify the methodology of Bollerslev and Todorov (2011b) and replicate their
results for the S&P500 index. I also extend those calculations to FTSE100 and
Eurostoxx50 indices. This allows me to compare the co-movement of the premia
for the market crash with the co-movement of premia for the rest of the risk. I
�nd that the market crash premia exhibits higher correlation than the residual
premia.

The tail-risk premia correlations are elevated, relative to the correlation of
the reminder of the premia, even when I account for the time varying corre-
lation. I use the Dynamic Conditional Correlation model of Engle (2002) to
calculate time-varying correlation coe�cients, as the cross market correlations
are renowned to be unstable over time. I �nd that the correlations of the crash-
risk premia are indeed time-varying, yet they remain relatively stable over time

4Variance Risk Premium is the premium that markets require for the risk of a change of
uncertainty. This premium is calculated as a di�erence between the statistical measure of
market volatility (empirically measured by the realized volatility) and the risk neutral implied
volatility (empirically measured by the options implied volatility index, ex. VIX).
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(implying high persistence of correlations). This is especially striking in compar-
ison with the fact that the crash-premium itself is very sensitive to key market
events (e.g. Russian default, LTCM collapse, Lehman Brothers bankruptcy
etc.).

Summing up, in my study I have decomposed Variance Risk Premia for
three major equity indices into their market crash and non-crash components.
I �nd that the most of the variance premium is determined by the crash risk on
all the studied markets. This result is consistent with vast theoretical �nance
literature of the large impact of the crash risk on both dynamics and level of
the risk premia (see Rietz 1988, Barro 2006 or Gabaix 2012).

Moreover, to the best of my knowledge, this paper is the �rst one to show that
the volatility premia demanded for the crash risk are more tightly co-moving
across the markets than the premia for the non-crash risk.5 This apparent higher
correlation of the premia for the tail events implies that investors view the tail
events as the ones that have global impact. This in turn means that �nancial
markets are pricing in market contagion i.e. the fact of higher co-dependence of
largely adverse shocks, at least according to the de�nition of contagion followed
in this paper.6

The tail-dependency of volatility premia documented in this study has a
straightforward implications for investors' portfolio design. It shows that poten-
tial gains from portfolio diversi�cation are smaller than what could be expected
when not accounting for tail-dependency, as the cross-country hedging will not
be e�ective during the times of turmoil. This may lead to a conclusion that
models that do not capture tail dependence of the variance premia will over-
estimate diversi�cation returns. This, in turn, might bias the estimates of the
home bias upwards. Moreover, Bollereslev et al. (2014) showed that the tail risk
premium is a good predictor of future equity returns of the S&P500. My study
implies that the majority of the tail-premium is determined globally, hence it
should also exhibit predictive power over the other equity markets. This implies
that global tail risk premium might be an important pricing factor.

Olivier Blanchard, the chief economist of the IMF, said that policy makers
should remove tail-risks and perceptions of tail-risks.7 This relates this study to
the issue of the risk taking channel of the monetary policy. Classically this issue
is viewed from the perspective of bank's willingness to lend money for the riskier
projects. Yet, it can also be mirrored in the pricing of the risk in the equity
markets. Higher propensity of banks to �nance riskier projects would imply
lower risk premia on equity markets. Consequently one could link monetary

5Bollerslev et al. (2012) or Londano (2012) show that the Variance Risk Premia are
dominated by a global component, yet they do not look into the split of the VRP into the
tail- and non-tail risk related premia.

6As mentioned before this is a very restrictive de�nition of contagion. This de�nition
does not provide any details on the channels of contagion. Moreover it also does not take
into consideration the problem of the common shocks. In fact, for this de�nition to pin
down contagion solely one has to assume that common shocks have the same volatility as
the idiosyncratic shocks. This is one of the reasons why Forbes (2012) claim that contagion
should not be analysed from correlation perspective.

7The Economist, January 31, 2009
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policy with the risk appetite of the investors for bearing the tail risk. Hattori
et al. (2013) studied the impact of the quantitative easing (QE) on tail risk
perceptions, �nding statistically signi�cant decrease of tail premia due to the
QE on the US market. My analysis, however shows that tail premia are co-
moving closely across di�erent countries, hence any policy that reduces tail-risk
premia should have a global impact. This implies that US QE might have large
spillover e�ects on other equity markets and consequently on other economies.
The analysis developed in this study suggest that an interesting direction for
future research is to investigate the global aspect of the QE.

The remainder of the paper is organized as follows. Section 2 brie�y describes
the methodology and Section 3 characterizes the dataset used for the analysis.
Section 4 describes the results and the last section concludes.

2 Methodology

The methodology of this study composes of three parts. First, I provide intuition
on the concept of the Variance Risk Premium (VRP) and I show how it is
measured using daily data on options and 5 minute intra-day data on futures.
Second, I describe how to decompose VRP into the part related to the tail
risk and the part related to the non-tail risk, using techniques developed by
Bollerslev and Todorov (2011b). I also include description of my modi�cation
that allows to use the original methodology with other datasets. Finally, I lay
down the Dynamic Conditional Correlation model of Engle (2002), which is used
to analyse potentially time-varying correlations between di�erent premia.

2.1 Variance Risk Premium (VRP)

Many �nancial studies have shown that not only equity returns, but also volatil-
ities (risks) of those returns are time-varying. This basic fact of non-constant
volatility means that this is an additional source of investment risk. In fact
markets are pricing this risk in the form of the Variance Risk Premia (VRPa).
This is a relatively new concept describing market's premium for volatility in-
stability. Yet, �nancial markets have already developed tools to hedge this type
of risks. VRPa can be traded using variance swaps (see Demeter� et al. (1999)
or Levin (2014) for details). Those instruments simply swap future unknown
realized variance for current option implied variance.

On the technical side, the VRP is measured as the di�erence between the
physical expectations (the P-measure) of the returns' realized quadratic varia-
tion and the risk neutral expectations (the Q-measure) of the quadratic varia-
tion.

V RPt =
1

T − t

(
EPt (QV[t,T ])− EQt (QV[t,T ])

)
(1)

The physical expectations (the P-measure) of the quadratic variation is sim-
ply the best statistical T − t periods ahead forecast. Quadratic variation is
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measured as the realized variance based on the 5 minutes intra-day prices of
index futures. This approach has been strongly advocated by Shepard et al.
(2013), who showed that this is the best variance estimator. In order to adjust
for the overnight price changes daily realized variance is rescaled by the constant
proportion of overnight change. Moreover in this study, following Bollereslev et
al. (2009), I use simple naïve expectations of the realized variance as a proxy
for realized variance forecast. This approach should be e�ective as variance
exhibits large persistence, exempli�ed by the volatility clustering e�ects.8

EPt (QV[t,T ]) =

t∑
i=t−(T−t)

RVi (2)

The risk-neutral expectations of the quadratic variation (the Q measure) is
measured using daily data on the panel of options. Those data enable us to
calculate the model free option implied variance of future prices. This type of
variance measure simply re�ects the value of the expected variance under the
assumption of risk neutrality of market participants. In more technical terms
this measure assumes that the stochastic discount factor is constant and equal to
the invers of the risk-free interest rate. This means that, in case of risk-averse
investors, the Q measure of the variance combines investors' expectations of
future variance with their risk preferences (see Figlewski 2012).9 The most
classical example of a model free Q-measure of volatility is the VIX index.10

My Q measure of the quadratic variation only slightly di�ers from the VIX
index.11 Both measures use interpolation/extrapolation to calculate implied
volatility for a �xed time horizon. Yet, unlike the VIX which uses only two dif-
ferent option maturities to calculate intrapolated/extrapolated values, I use the
whole available set of di�erent maturities of options. Moreover, in contrast to
the VIX methodology which interpolates/extrapolates linearly quadratic volatil-
ity, I interpolate/extrapolate option prices using Carr and Wu (2003) polinomial
and based on theoretical option prices I calculate the implied volatility.12 This
change in the calculation method is motivated by two facts. First, the set of

8More recently, however Bekaert and Hoerova (2014) or Kaminska and Roberts-Sklar (2015)
show that the naïve forecast can be improved if the forecasting method models separately
continuous and jump part of the volatility. Furthermore the forecast might be improved even
more by the use of option implied volatility data. Yet, given that the focus of this study is the
decomposition and cross correlation of VRPa, it seems that simple naïve expectations forecast
would work well.

9Simple coin �ipping game might be a great example to understand the di�erence between
Q- and P- measure of the probability distributions. Say, the game pays EUR 100 in case the
�ip yields heads and 0 in the other case. The P �measure would correspond to the actual
distribution, hence both events have probabilities equal to 0.5. In order to determine the
Q-measure of probabilities we need to know the price of the game. Say, an economic agent
is willing to pay EUR30 for that game. Under the assumption of risk-neutrality this would
mean that the distribution of the probability should be 0.3 for heads and 0.7 for tails. The
di�erence between those two measures of probabilities simply re�ects agents risk aversion.

10This index just has to be divided by 100 and squared to obtain implied variance.
11In fact the correlation of my measures with volatility indices: VIX, VFTSE and VStoxx

is very high and amounts roughly to 95%.
12Please refer to the Appendix A for more details on the approximation.
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data used in this study, su�ers from a small number of very close to maturity
options, hence the VIX methodology would imply linear extrapolations from the
two options with quite distant maturities. This seems very inappropriate, es-
pecially when dealing with options capturing large jump probabilities. Second,
I wanted to keep my measure consistent with the decomposition of the VRP
presented in the following section.

Equation 3 describes the formula for the Q measure of the quadratic varia-
tion, once,the theoretical 14-day to maturity options are calculated:

EQt (QV[t,T ]) =
2

T − t
∑
i

∆Ki

K2
i

e(T−t)rQ(Ki)−
1

T − t

[
F

K0
− 1

]2

(3)

In my calculations options time to maturity T −t is �xed to 14 days (it is always
quoted as a fraction of a year). The forward index level F is calculated based on
the index level at a given moment and the respective (14 day) risk-free interest
rate r. K0 denotes the �rst strike price below the forward index level F of the
panel of options. Ki is the strike price of ith out-of-the-money option; a call
if Ki > K0 and a put if Ki < K0; both put and call if Ki = K0. ∆Ki is
simply a mid-point between two strike prices: Ki−1 and Ki+1. The price of the
option Q(Ki) for a given strike price is either a price of the call option C(Ki)
if Ki > K0 or a price of a put option P (Ki) if Ki < K0. The entire equation
3 is exactly the same as the one used to calculate the VIX index (see Chicago
Board Options Exchange White Paper).

Finally, as shown in eq 1, VRP is measured as the di�erence between the
two expectations, hence it re�ects investors' attitude towards the risk � the so
called risk appetite. The decomposition of this risk enables us to understand
what drives those premia: tail-events or more �normal� type of equity return
movements. In the next section I lay down the basic assumptions on the asset
price dynamics needed to calculate how much of the VRP is attributed to the
tail events.

2.2 Tail-premia measures

Bollereslev and Todorov (2011b) methodology, which is applied in this paper,
requires that the underlying asset prices follow a very general jump-di�usion
process.13 It implies that that the asset price dynamics follows stochastic dif-
ferential equation:

dFt
Ft

= αtdt+ σtdWt +

ˆ
R

(ex − 1)µ̃(dt, dx) (4)

13This type of process is very common in the �nancial literature, mainly due to the fact that
it �ts the actual data very well. Moreover, it allows prices to exhibit discontinuous patterns,
which in turn, justi�es the existence of markets for �nancial options in theoretical �nance
models (for some discussion of merits of jump-di�usion models please refer to Tankov and
Voltchkova(2009)).
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where αt denotes the drift, σt denotes the instantaneous volatility and Wt is
a standard Brownian motion. The �rst two elements of the sum depict the
continuous part of the dynamics. The third part of the sum describes jumps
or discontinuities of the asset price dynamics, where the µ̃(dt, dx) is the so-
called compensated jump measure. The jump part may for example follow a
Poisson process as in the Merton (1976) model. But in case of this study there
is no need to limit ourselves to any parametric distribution, neither for the
continuous, nor for the jump part. In fact, for our further analysis, the most
important feature of this model is the additive separability of the continuous
and the jump components.

Both the di�usion and the jump part of the asset price dynamics will have
their parallels in the process describing asset price variance. Let us, consider
quadratic variation of the logs of asset prices over the [t,T] time interval:

QV[t,T ] =

ˆ T

t

σ2
sds+

ˆ T

t

ˆ
R

x2µ(ds, dx) (5)

where the �rst component
´ T
t
σ2
sds is the volatility of the continuous process

and the second component
´ T
t

´
R
x2µ(ds, dx) denotes the volatility generated

by the discontinuous part. In principle the �rst part should be responsible for
the volatility generated by the �smaller� (continuous) movements in the asset
prices, whereas the second part would depict volatility generated by the �larger�
asset price movements (jumps).

Quadratic variation equation eq 5 implies that the VRP, de�ned by eq 5, will
simply be a sum of two di�erences: the di�erence between P and Q expectations
of the continuous part of the quadratic variation and the di�erence between P
and Q expectations of the jump part of the quadratic variation

V RPt = 1
T−t

(
EPt (
´ T
t
σ2
sds)− E

Q
t (
´ T
t
σ2
sds)

)
1

T−t

(
EPt
´ T
t

´
R
x2µ(ds, dx))− EQt (

´ T
t

´
R
x2µ(ds, dx))

) (6)

Given that in this study the main focus is on the tail-risk, we need to create
a variance premium measure that would only capture the premium for tail
events. Bollerslev and Todorov (2011b) propose to de�ne a VRP(k) that only
captures volatility premia induced by asset price moves above substantially large
threshold k:

V RPt(k) = 1
T−t

(
EPt

(´ T
t

´
|x|>k x

2vPs (dx)ds
))

− 1
T−t

(
EQt

(´ T
t

´
|x|>k x

2vQs (dx)ds
)) (7)

where the k parameter denotes a threshold separating large jumps from the small
ones. It might be quickly noted that the V RPt(k) only depends on the jump
part of the process. This approximation is of course valid only for su�ciently
high k.
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Finally on the basis of the VRP(k) and the total VRP, I can also de�ne a
truncated volatility measure VRP(Tr). This measure will capture the size of
the variance risk premium that is not attributed to the market crash:

V RPt(Tr) = V RPt − V RPt(0.9) (8)

Moreover, I can also de�ne a measure of VRP that captures all the volatility
risk except for the risk of large jumps, both down and upside:

V RPt(Tr − 2) = V RPt − V RPt(0.9)− V RPt(1.1) (9)

Having de�ned tail-risk premia, the next two sub-sections will brie�y de-
scribe how to calculate Q- and P- measures from the data.

2.2.1 Risk-Neutral (Q) Measures

The most di�cult part of the Q-measure estimation is to pin down the pro-
cess of the jump density vQt (dx). This jump density should be estimated non-
parametrically from the options data. The key idea is to generate a time-varying
measure with as few assumptions regarding its structure as possible.

vQt (dx) = (ϕ+
t 1{x>0} + ϕ−t 1{x<0})v

Q(x)dx (10)

where ϕt denotes an unspeci�ed stochastic process of temporal variation of
the jump arrivals and vQ(x) is an unspeci�ed time-invariant density. Yet,
the methodology of Bollerslev and Todorov (2011b) allows us to estimate tail-

volatilities EQt

(´ T
t

´
|x|>k x

2vQs (dx)ds
)
even under those very general assump-

tions. First of all they calculate model-free risk neutral measures from the panel
of options data. Second, using the Extreme Value Theory (EVT) those mea-
sures are used to estimate Generalized Pareto Distribution (GPD) parameters
(namely: scale (σ) and shape (ξ) parameters) and the average jump intensities

E( 1
T−tE

Q
t (
´ T
t
ϕsds)) through a just identi�ed GMM estimation. This allows us

to fully describe the time invariant part of the jump intensity vQ(x). Third, us-
ing �xed parameters for the GPD, the time varying jump intensities are backed
out to ful�ll exactly the moment conditions. Finally, using the estimated pa-
rameters the Q measure of the tail-volatility is calculated for a given threshold
k.

Risk neutral jump-tail measures I describe the risk neutral jump-tail mea-
sures in detail as here I deviate slightly from the original Bollerslev and Todorov
(2011b) framework.

Bollerslev and Todorov (2011b) propose model-free risk-neutral jump tail
measures:

RTQt (k) =
erCt(K)

(T − t)Ft
(11)

LTQt (k) =
erPt(K)

(T − t)Ft
(12)
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where k = ln(KF ) is the log-moneyness, Ct(K) and Pt(K) are prices of call and
put options respectively, K is the option strike price and Ft is the price of the
underlying futures. Those measures capture solely the jump risk as long as two
conditions are ful�lled. First the options have to be deeply out of the money.
Bollerslev and Todorov (2011b) use moneyness levels of {0.9000 0.9125 0.9250}
for the left tail and {1.0750 1.0875 1.1000} for the right tail, which should
guarantee enough distance from the underlying to capture only the jump risk.
Second the option needs to be close to maturity. Bollerslev and Todorov (2011b)
use options that have median of 14 days to maturity. In my calculations I follow
the same levels of option moneyness, but the dataset used in this study has much
longer median maturity of options (see Table 7). This means that my model-free
risk-neutral jump tail measures might be �contaminated� by the di�usive part
of the process. In fact, my jump tail measures were substantially larger when
the options had longer maturities relative to the original study.

In order to circumvent this problem I use options with di�erent maturities
for a given moneyness to �t the polynomial describing time-decay plot of option
price. Carr and Wu (2003) show that a simple polynomial should allow to
approximate time-decay of options no matter whether the underlying process
contains jumps or not. This approximation allows me to calculate the theoretical
price of the 14-days-to-maturity option. Appendix A provides details on the
approximation method as well as some robustness checks.

Once I have the theoretical 14-days-to-maturity option price, I construct the
same risk-neutral jump tail measures. In this case the pattern of my jump tail
measures closely resembles the original one of Bollerslev and Todorov (2011b).

Generalized Pareto Distribution (GPD) parameters estimation and
tail-volatility GPD parameters are estimated using the simple non-linear
GMM procedure of Hansen and Singleton (1983). The exact moment condi-
tions are described in the Appendix B. The basic principle is that for both tails
(left and right) I have 3 parameters to estimate and jump-tail measures for 3
di�erent levels of moneyness, hence the system is just identi�ed.

2.2.2 Objective (P) Measures

Analogously to the Q measure estimation, the key in estimation of the P measure
is to pin down the jump density vPt . Unfortunately it is not possible to esti-
mate the intensity fully non-parametrically, simply because I do not have three
di�erent points of the curve on the same day. Consequently I need to assume
some sort of a�ne model of the intensity. Following Bollerslev and Todorov
(2011a) I assume that the temporal variation of the volatility is a function of
the stochastic volatility σ2

t of the continuous part:

vPt (dx) = (α−0 1{x<0} + α+
0 1{x>0} + (α−1 1{x<0} + α+

1 1{x>0})σ
2
t )vP (x)dx (13)

This directly implies that I have to estimate four constant across time pa-
rameters (namely: scale (σ) and shape (ξ) parameters of the GPD that charac-
terizes vP (x), and α0 and α1) for each tail. Moreover I have to get the estimate
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of the time-varying stochastic volatility σ2
t . In order to do so I follow directly

Bollerslev and Todorov (2011a) .
First I estimate continuous volatility using Mancini's (2001) idea of trun-

cated volatility. All intra-day asset price movements below a certain threshold
contribute to the continuous volatility whereas the ones above the threshold
contribute to the jump volatility. The truncation threshold is time-varying to
capture the e�ects of the volatility clustering. The threshold is a function of the
past continuous volatility. Moreover the daily pattern of the volatility is also
taken into account. For each index I estimate the average volatility for a given
exact time. On that basis I calculate the time of the day volatility multiplier
that either increases or decreases the threshold. For more details on the realized
volatility calculations please refer to the Appendix C.

Second I select a threshold level, which is always higher than the maximum
threshold used to determine continuous volatility. I select a threshold of 0.6%
for all the indices. On the basis of this threshold I can mark observations that
are de�nitely jumps in the whole sample. Then I use estimated continuous
volatility along with matrices indicating jumps (the ones determined by 0.6%
threshold) to estimate all four parameters in question. Again the estimation is
done using the GMM framework (for details on the exact moments speci�cation
please refer to the Appendix D).

Finally, once all the parameters are calculated I calculate the tail-volatilities

EPt

(´ T
t

´
|x|>k x

2vPs (dx)ds
)
for the thresholds of 0.9 and 1.1 to match the data

for the Q-measure. Again I can compare the GPD parameters across di�erent
indices.

2.3 Co-movement measures

In the last step of the analysis I look at the co-movement of the selected indi-
cators (namely: VRP(0.9) and VRP(Tr)). In order to keep the analysis simple
and yet powerful all the measures are based on the simple r-Pearson correlation
coe�cient. Unconditional correlations of selected indicators across three indices
(S&P500, FTSE100 and Eurostoxx50) constitute a natural benchmark for fur-
ther analysis. Moreover, I also report Kendall's rank correlation coe�cients as
the relationships between VRPs might exhibit non-linear patterns.

Finally, in order to allow for a more complex dynamic correlation structure, I
apply the Dynamic Conditional Correlation (DCC) model of Engle (2002). This
model helps me not only to overcome the problem of time-varying correlation,
but also helps me to control for the heterogeneity of individual shocks. The
model looks at the conditional correlations of innovations, consequently enabling
me to gauge how does a shock propagate across the markets.

The DCC model requires certain doze of parsimonity, hence the level equa-
tions are modeled as a simple AR(4) processes (i.e. the Ai matrices in eq. 14
are diagonal). The choice of this lag is motivated by the potential existence of
monthly e�ects in the premia.

Conditional covariance matrix (eq. 15) is decomposed into the matrix of
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individual conditional standard deviationsDt and conditional correlation matrix
Rt (see eq. 16). Conditional standard deviation matrix Dt is a diagonal matrix
where each element on the diagonal simply represents a square root of individual
variances which are modeled as the GARCH(1,1) process. Transformation of the
conditional correlation matrix (see eq. 17) guarantees that the matrix has ones
on the diagonal. Quasi conditional correlation (see eq. 18) is a weighted average
of the unconditional sample correlation R̄ (see eq. 19) and the previous period
cross product of 'corrected' innovations (see eq. 20) and the previous period
conditional quasi correlation. The speci�cation of the eq. 18 nests the Constant
Conditional Correlation (CCC) model of Bollerslev (1990), hence allowing for
direct testing of the time varying correlation assumption. Should λ1 and λ2

parameters were jointly statistically insigni�cant, then the correlation between
innovations would be constant over time.

yt = C +

4∑
i=1

Aiyt−i + εt (14)

Et−1(εtε
′
t) = Σt (15)

Σt = DtRtDt (16)

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (17)

Qt = (1− λ1 − λ2)R̄+ λ1ε̃t−1ε̃
′
t−1 + λ2Qt−1 (18)

R̄ = E[ε̃tε̃t
′] (19)

ε̃t = D−1
t εt (20)

3 Data

The dataset used in this study allows me to replicate the US results of Bollerslev
and Todorov (2011b) as well as to extend their calculations to the UK and the
Euro-zone. Accordingly, US calculations are based on the S&P500 index, the
UK on the FTSE100 index and the Eurozone on the Eurostoxx50 index. The Q
measure (implied distribution) is based on a daily panel of options, whereas the
P measure (statistical measure) is based on intra-day (5 minutes) data on traded
futures, obtained from Thomson Reuters. Finally, correlation calculations are
conducted on the weekly averages, as the daily data contained too much noise.
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3.1 Options

I use options data provided by the Bank of England. The data are sampled with
a daily frequency. The data for S&P500 and FTSE100 options span from Jan-
uary 1995 to December 2012. Unfortunately the data span for the Eurostoxx50
is shorter and covers only dates from January 1999 to December 2012. This
sample still allows me to cover major market turmoils (LTCM, Russian and
Asian crises - for US and UK only; dotcom bubble burst, accounting scams and
the great recession period for all indices).

I apply a standard set of �lters on the options data before any calculations
take place. The set of �lters is based on programmes used by the Bank of Eng-
land which are in line with the ones used in Carr and Wu (2009). The detailed
set of �lters used with their brief description can be found in the Appendix E.

3.2 Intra-day data

I use the intra-day data provided by Thomson Reuters. The data are sampled
with 5-minutes frequency. This frequency allows me to capture price jumps as
well as it should allow to limit the impact of the microstructural noise. In fact
Shepard et al. (2013) show that realized variance based on 5-minute data is the
best estimator of the realized variance across di�erent assets.

For S&P500 and FTSE100 I use the data spanning from January 1996 to
December 2012, whereas for Eurostoxx50 the data only spans from January 1999
to December 2012. The range of the dataset for the S&P500 is unfortunately
shorter than in the Bollerslev and Todorov (2011b) paper, hence the parameter
estimates might di�er. In terms of trading time I have tried to pick hour brackets
between which I had data throughout all the dates. Consequently, my time
window is: for S&P500 - 81 observations (from 8.30 to 15.10), for FTSE100 - 94
observations (from 8.15 to 16.00) and for Eurostoxx50 - 81 observations (from
9.15 to 15.55).

4 Results

4.1 Q-measure

Table 1 summarizes parameter estimates for the risk-neutral Q measure. It is
clear that the implied distributions are skewed. Left tails are much heavier
across all the indices. This is simply a con�rmation of the existence of the so
called volatility �smile�.

The left-tail seems to be the lightest for the FTSE100 index, as all the
parameters are the smallest across all three indices. Eurostoxx50 exhibits the
heaviest tail, but the curvature of the tail is slightly smaller than the one of the
S&P500. This means that the distance between Eurostox50 and S&P500 will
diminish further in the tail. The results for the right tails also seem to follow
the same pattern. It is more informative to look at the annualized average jump
intensities presented in Table 2. Those intensities again underline the skew of
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S&P 500 Eurostoxx 50 FTSE 100

LT RT LT RT LT RT

ξ 0.2570 0.0615 0.2247 0.0815 0.2107 0.0278

σ 0.0513 0.0242 0.0618 0.0370 0.0500 0.0263

αv 1.1431 0.7266 1.4813 0.2457 0.9761 0.6465

Table 1: Q measures estimation results.

Jump Size US Euro UK

>7.5% 0.7266 1.2457 0.6456
>10% 0.2666 0.6457 0.2526
>20% 0.0082 0.0632 0.0074
<-7.5% 1.1431 1.4813 0.9761
<-10% 0.6627 0.9338 0.5542
<-20% 0.1052 0.1758 0.0760

Table 2: Q measure - annualized jump intensity estimates.

the distribution. The di�erence between the left and right tail jump intensities
is even more pronounced for the more extreme jumps. Finally, the magnitudes
of the average annualized jump intensities seem to be quite high and not really
matching the actually observed data.

4.2 P-measure

Table 3 summarizes estimation results for the objective P measure. Unfortu-
nately the estimates of the GPD parameters are not comparable with the ones
from the Q measure, as they were taken at a di�erent threshold. Yet, I can
brie�y characterize the behavior of tails under the P measure.

First of all a small skew towards the left tail can be noted. This stands
in contrast with the Bollerslev and Todorov (2011a) �ndings, who note a skew
towards the right tail. It can be explained by the fact that the sample I use also
covers the period of the great recession. Second, the tail ordering in terms of tail
heaviness seems to be reversed relative to the Q measure. Now the Eurostoxx50
seems to have the lightest tails and FTSE100 seems to have the most leptokurtic
distribution. This is particularly noticeable when analyzing the values of the
average annualized jump intensities (see Table 4).

It should also be noted that all the jump intensities seem to be closely con-
nected with the continuous volatility, as all the estimates of α1 remain positive
and di�erent from zero.

A quick comparison of the average annualized intensities for the P measure
(see Table 4) with those for the Q measure (see Table 2) clearly suggests that
the actual jump probabilities are much smaller. This happens both for the right
and left tails of the distribution.
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US Euro UK

LT RT LT RT LT RT

ξ 0.2500 0.2088 0.2305 0.1648 0.2596 0.2218

100σ 0.1594 0.1834 0.1819 0.1955 0.1624 0.1714

α0 -0.0016 -0.0019 -0.0016 -0.0013 -0.0025 -0.2772

α1 0.0329 0.0396 0.0346 0.0290 0.0406 0.0402

Table 3: P measure estimation results

Jump Size US Euro UK

>7.5% 0.0062 0.0016 0.0187
>10% 0.0016 0.0003 0.0052
>20% 0.0001 0.0000 0.0002
<-7.5% 0.0069 0.0082 0.0343
<-10% 0.0020 0.0022 0.0102
<-20% 0.0001 0.0001 0.0004

Table 4: P-measure jump intensities

4.3 Variance Risk Premia, Tail Risk Premia and Investor
Fears Indices

On average all the Variance Risk Premia (VRP) are negative. They also exhibit
substantial volatility (see table 5). Moreover at the periods of turmoil they
all seem to go through two phases: �rst when a sudden increase of the realized
volatility is not matched by the implied volatility (hence an increase in the VRP)
and second a sharp increase in the implied volatility with a normalization of the
realized volatility leading to a sharp decrease in the volatility (see Figure 1).

Figure 2 shows the dynamics of the estimated VRP(k). The values of the
VRP(0.9) related to the negative jump of 10% are clearly higher in the abso-
lute values than the values of VRP(1.1) of the 10% positive jump - once again
depicting the distribution's skew towards negative values. Moreover it seems
that the Eurostoxx50 reacts to the unfavorable news much more than the other
markets. The absolute value of the VRP(k) for the Eurostoxx50 in periods of
turmoil is much higher than in the other two indices.

VRP(k) dynamics seems to match signi�cant market events such as LTCM
bankruptcy, Russian default, dotcom bubble burst and economic downturns.

Mean Standard Deviation

S&P500 -0.0232 0.0222
FTSE100 -0.0081 0.0402

Eurostoxx50 -0.0244 0.0310

Table 5: Summary statistics for Variance Risk Premia, based on weekly data
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Figure 1: Variance Risk Premia, based on the weekly data

Consequently the absolute value of the VRP(k) increases during the Russian
crises, at the dotcom bubble burst, and during the Great Recession. All indices
noted the biggest dip in VRP(k) during the Great recession, but in the case of
S&P500 the jump was much higher than any noted before. Another interesting
fact is the prolonged increase in the VRP(k) for the Eurozone in 2003. This may
be caused by the fact that the Eurozone at that period was su�ering from an
economic slowdown. Finally the last interesting aspect pertains to the period of
the Eurozone sovereign debt crisis. It is clear that the Eurostoxx50's VRP(k)
reacted by much more that the S&P500's VRP(k), where this period was hardly
noticeable.

It is easy to note that both downside and upside tail VRP(k) measures react
at the same time. Consequently one might relate it solely to an increase of
overall jumps intensities in the economy. That is why it is also useful to look
at the downside premium �corrected� by the premium coming from the upside
risk. Following Bollerslev and Todorov(2011b) I de�ne an Investor Fears Index
as:

FIt(k) = V RP−t (k)− V RP+
t (k) (21)

Investor Fears Indices co-move clearly across di�erent markets. Moreover
they are very sensitive to major market events, reaching very low values during
market turbulences (see Figure 3). In addition, periods when those indices drop
to the lowest values coincide with the ones when VRP(0.9) reaches theirs lowest
values.

4.4 New evidence on contagion

From the perspective of the volatility contagion the most important is to com-
pare di�erent indices correlations of VRP(0.9) to correlations of VRP(Tr). Ta-
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Figure 2: VRP for k=0.9 and k=1.1
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Figure 3: Investor Fears Index (VRP(0.9)-VRP(1.1)) vs. major adverse events.
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r-Pearson Kendall τ

VRP(Tr) VRP(0.9) VRP(Tr) VRP(0.9)
S&P500 FTSE100 0.7089 0.9476 0.3290 0.7528

S&P500 Eurostoxx50 0.7930 0.8977 0.4409 0.7418
FTSE100 Eurostoxx50 0.8989 0.9238 0.5464 0.7586

Table 6: Pairwise correlations of the VRP(0.9) and VRP(Tr), based on the
weekly data.

ble 6 show that there is a notable increase in correlations for volatility tail
premium VRP(0.9) relative to the truncated volatility premium VRP(Tr). This
phenomenon shows that markets price in market contagion. Moreover it also
underlines that the tail premium is more globally determined relative to the rest
of the premium.

VRPs seem to be quite volatile and heavy-tail distributed, hence for ro-
bustness I also look at Kendall's τ measures This measure is more immune to
outliers than r-Pearson correlation coe�cient. Yet, calculated Kendall's τ 's ex-
hibit even more striking evidence for market contagion hypothesis, as the gap
between measures for VRP(Tr) and VRP(0.9) is even wider.

Market correlations are perceived to be unstable over longer periods of time.
In order to overcome this problem I have extended my analysis to the dynamic
correlations. A simple rolling window analysis, presented in Appendix F, shows
that correlations in question are indeed unstable. Moreover, Forbes and Rigobon
(2002) pointed out that this type of simple analysis might be biased due to
heterogeneity of individual shocks.

As mentioned earlier, I solve both aspects by looking at the AR(4)-DCC(1,1)
model. This class of models shows that the conditional correlation of dynamic
innovations is time-varying, yet the correlations for the tail premia (VRP(0.9))
remain higher than the ones for the reminder of the premia (VRP(Tr)) (see Fig-
ure 4). The gap between the innovation correlations is the biggest for S&P500
- FTSE100 pair. For this pair also the VRP(0.9) innovation correlation ex-
hibits the highest volatility. For the two other pairs the relationships remains
much more stable. Still the coe�cients of the dynamic correlation part remain
signi�cant, rejecting the Constant Conditional Correlation model of Bollerslev
et al. (1988). For more details about each pair's estimates please look at the
Appendix G.

One of the key drawbacks of Dynamic Conditional Correlation models is the
fact that they are very dependent on the speci�cation of the level equation. Dif-
ferent speci�cations may lead to di�erent results or even to unfeasible solutions
(mainly due to non-�nding semi-positive de�nite variance-covariance matrices).
I have also noted this problem in my analysis, while trying di�erent level speci-
�cations (simple mean model, AR(1), AR model with lagged values of the other
indices). Still the key feature of the data remained unchanged, i.e. tail risk
premia (VRP(0.9)) are more correlated than the truncated risk premium (VRP
Tr), even though the levels of shock correlations di�ered.
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Figure 4: Time varying conditional correlations calculated on the basis of weekly
data by AR(4)-DCC(1,1) model.
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Index min max median

BT - S&P 500 5 x 14
S&P 500 6 75 39
FTSE 100 5 29 15

Eurostoxx 50 5 74 36

Table 7: Maturities of the closest to maturity options. Source: Bollerslev and
Todorov, 2011 and own calculations.

Finally one may also challenge the tail measure (VRP(0.9)) as it strongly
co-moves with the upside tail measure (VRP(1.1)). That is why I have also
compared correlations and dynamic correlations of Investors Fear Indices with
VRP(Tr-2) measures (i.e. VRP-VRP(0.9)-VRP(1.1)). The qualitative results
remained unchanged (see Appendix H).

5 Conclusions

I managed to calculate VRP and VRP tail measures (VRP(0.9) and VRP(1.1))
for three major equity indices: S&P500, FTSE100 and Eurostoxx50. I found
evidence showing that �nancial markets price in market volatility contagion.
This result remains in place even when I allow for a dynamic correlation and
when I control for individual variance heterogeneities. Moreover, I showed that
VRP tail measures correlation is quite stable (though dynamic) and does not
sharply react to major market events. This contrast to the VRP tail measures,
which react strongly to key market events.

Appendices

Appendix A - Time-decay approximation

The dateset used in this study has one substantial drawback - the time to matu-
rity of options (that are closest to maturity) is much longer than in the Bollerslev
and Todorov (2011b) study (see Table 7), except for FTSE100. Consequently
the estimator of the tail measure could be �contaminated� by the di�usion pro-
cess. This in turn may bias my estimates of the Generalized Pareto Distribution
leading to an inaccurate inference about tail-risk premia. In order to circumvent
this problem I use all available maturities of options to estimate the time-decay
patterns. This allows me to calculate the theoretical value of option that has
14 days to maturity.

Out-of-the-money options at the maturity have zero value. However, the
order of convergence over time to that value depends largely on the process
governing the underlying asset's price dynamics. Carr and Wu (2003) showed
that the time decay (or the order of convergence) of out-of-the money options
is dominated by the presence of jumps. They showed that if the price of the
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Figure 5: Time-decay plots with �tted polynomial. Source: Carr and Wu (2003)

Number of options S&P 500 FTSE 100 Eurostoxx 50

6 15% 91% 59%
5 12% 9% 5%
4 52% 0% 5%
3 20% 0% 31%

Table 8: The proportion of maturity nodes in the data

underlying asset follows a jump process or a jump-di�usion prices then the value
of the out-of-the-money option will converge more slowly to zero than in the
case of a strict di�usion process. They also showed that the time decay of option
prices can be closely approximated by the following polynomial:

ln

(
P

T

)
= a(lnT )2 + b(lnT ) + c

This approximation equation is valid regardless of the underlying process
exhibiting jumps or not. If the underlying equity process has no jumps the
�tted line should have a greater slope close to the zero maturity, whereas in
case it exhibits jumps the time-decay plot should be �atter (see Figure 5). In
this study I �t this polynomial for each day of the data since the perception
of the jump probability might change over time. The �tted line allows me to
calculate the theoretical option value for the exact 14 days to maturity.

The number of options used in the approximation varies over time and is
driven by the data availability. I use 3 to 6 option maturities to �t the poly-
nomial - Table 8 shows details for each index. I should expect to get the best
results for the FTSE100 index as its option data displays the highest quality -
shortest maturities and most of the dataset is covered by 6 maturities. However
given that the S&P500 index is the only one present in the original Bollereslav
and Todorov (2011b) study I will start my robustness check with it.

First of all it might be noted that the dynamics of tail measures calculated
on the bias of the approximation follows nearly the same pattern as the one of
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BT: S&P 500 S&P 500

LT RT LT RT

ξ 0.2581 (0.0282) 0.0793 (0.0147) 0.2570 (0.0130) 0.0615 (0.0161)

σ 0.0497 (0.0021) 0.0238 (0.0010) 0.0513 (0.0009) 0.0242 (0.0006)

αv 0.9888 (0.0525) 0.5551 (0.0443) 1.1431 (0.0142) 0.7266 (0.0156)

Table 9: GMM estimates of the Q-tail parameters

Jump Size US-BT US

>7.5% 0.5551 0.7266
>10% 0.2026 0.2666
>20% 0.0069 0.0082
<-7.5% 0.9888 1.1431
<-10% 0.5640 0.6627
<-20% 0.0862 0.1052

Table 10: Annualized jump intensities implied by the Q-tail distributions

Bollerslev and Todorov (2011b) (see Figure 6). The two biggest di�erences are a
jump in the tail measure in the early 1996 that is only present in my calculation
and a more pronounced response of my tail measure to the dotcom bubble burst
in the late 2001. Unfortunately I do not have the original time-series data of
the tail measures to compare the accuracy of the �t using some sort of metric.
This is why I compare the GMM estimation results (see Table 9). The estimates
of the GPD are very close to each other especially for the left tail, as this tail
is being estimated with a higher accuracy. The only substantial di�erence are
slightly higher estimates of the jump intensity parameters. However as one
may note from the �nal results of the structure of the jump probabilities the
di�erences are not very large (see Table 10). Judging by the sole comparison of
my results to the ones of Bollerslev and Todorov (2011b), it appears that the
approximation does a very good job.

Yet, it is still important to see how well the approximation does with other
indices. Here I cannot rely on others results, as to the best of my knowledge I am
the �rst one to estimate those measures for other indices. Consequently I have
looked at two �t measures and volatility of the theoretical prices for di�erent
sets of maturity structures (see Table 11 and Figure 7). The simple �t measure
(R2) does not seem to be a good metric, due to the small number of nodes it
will be biased towards high values. The MAPE of the �t evaluated only at the
14 days to maturity also seems to be very small, except for the FTSE100. In
that case the MAPE value is ballooned by having a denominator very close to
zero. It is very di�cult to drive any conclusions from those simple �t metrics
as they are based on an insu�cient number of data points for each polynomial.

In order to overcome the problem of insu�cient number of data points I have
looked at theoretical 14-day price volatilities. In principle the volatility of the
theoretical price should not depend too much on the set of nodes I use in the
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Figure 6: Tail measures for k=0.9 and k=1.1 for S&P 500. First two graphs are
from Bollerslev and Todorov (2011) second from own calculations.
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S&P 500 FTSE 100 Eurostoxx 50
R2 of the polynomial for 6 di�erent moneyness levels

Minimum 98.95% 86.04% 99.53%
Average 99.99% 99.91% 99.99%

Percentage error of predicted price for 14-days to maturity option
MAPE 0.25% 2.86% 0.36%

Maximum 3.47% 56.43% 3.81%

Table 11: The �t of the time-decay polynomial.

approximation. Of course if I extrapolate the 14-day price from a big �distance�
the error of �t might generate a higher error than if I have actual maturities
very close to the 14 days. Nonetheless it seems informative to investigate how
much of the extra volatility is being caused by having distant maturities while
performing the approximation. Figure 7 presents inter-quartile ranges for the-
oretical 14-days prices.14 The volatility of the theoretical price rises across
minimum volatility pointing to certain losses caused by the approximation.

Appendix B - GMM conditions to estimate GPD parameters in the
Q measure

The aim of the GMM estimation for the Q measure is to �nd the following
vector of parameters for each tail:

θQ = [α±Qv̄
Q±
ψ (tr±); ξ±Q ;σ±Q]

ful�lling the following three moment conditions:

E(RTQt (k)) = α+
Qv̄

Q+
ψ (tr+)

σ+
Q

1− ξ+
Q

(
1 +

ξ+
Q

σ+
Q

(ek − 1− tr+)

)1−1/ξ+
Q

E(LTQt (k)) = α−Qv̄
Q−
ψ (tr−)

ξ−Q

ξ−Q + 1

(
ek
)1+1/ξ−

Q

(
ξ−Q

σ−Q

)−1/ξ−
Q

∗

∗2F1

1 +
1

ξ−Q
;

1

ξ−Q
; 2 +

1

ξ−Q
;
tr−

ξ−
Q

σ−
Q

− 1

e−k
ξ−
Q

σ−
Q


where 2F1 is a hypergeometric function and E(RTQt (k)) and E(LTQt (k)) are
sample averages of the introduced tail-measures.

14Inter-quartile range is being used instead of standard deviations to make the measure
more robust to odd observations.
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Figure 7: Inter quartile ranges of the theoretical 14-days option prices for dif-
ferent maturities used in approximation. Calculations are based on put out-of-
the-money option with k=0.9.
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Appendix C - Calculation of the truncated volatility

tba

Appendix D - GMM conditions to estimate GPD and intensity pa-
rameters in the P measure

The aim of the GMM estimation of the P measure is to �nd the following vector
of parameters for each tail:

θP = [α±0 v̄
±
ψ (tr±);α±1 v̄

±
ψ (tr±); ξ±;σ±]

The four moments conditions are as follows:

1

N

N∑
t=1

n−1∑
j=1

φ±i
(
ψ±(∆n,t

j p)− tr±
)

1{ψ±(∆n,t
j
p)>tr±} = 0 i = 1, 2

1

N

N∑
t=1

n−1∑
j=1

1{ψ±(∆n,t
j
p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄

±
ψ (tr±)CVt = 0

1

N

N∑
t=2

n−1∑
j=1

1{ψ±(∆n,t
j
p)>tr±} − α

±
0 v̄
±
ψ (tr±)− α±1 v̄

±
ψ (tr±)CVt

CVt−1 = 0

where:

φ±1 (u) = − 1

σ±
+

ξ±u

(σ±)2

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1

φ±2 (u) =
1

(ξ±)2
ln

(
1 +

ξ±u

σ±

)
− u

σ±

(
1 +

1

ξ±

)(
1 +

ξ±u

σ±

)−1

Appendix E - A short guide on how to get ERP(k) and VRP(k) from
the GMM estimates

This is a very short and basic instruction on how to derive ERP(k) and VRP(k)
for any given threshold k based on estimates. All of the following results are
based on the derivations presented in the appendix of the Bollerslev and Todorov
(2011b) paper.

Let us have a look at the tail volatility measure �rst. The measure can be
presented as a sum of two components:

ˆ
x>k

x2v(x)dx = 2v̄+
ψ (tr+) ∗K1 + k2v̄+

ψ (ek − 1)
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The �rst part of the sum is directly determined by my estimates. For the
selected threshold of tr+ = 0.075 I have estimated the value directly:

v̄+
ψ (tr+) = α+

Qv̄
Q+
ψ (0.075)

The multiplier K1 is also directly de�ned by the estimated parameters:

K1 = e−k/ξ
+

ξ+
(
ξ+

σ+

)−1/ξ+

[ξ+
3F2

(
1
ξ+ ,

1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ , 1 + 1
ξ+ ;

ξ+

σ+
(tr++1)−1

ek ξ
+

σ+

)
+k2F1

(
1
ξ+ ,

1
ξ+ ; 1 + 1

ξ+ ;
ξ+

σ+
(tr++1)−1

ek ξ
+

σ+

)
]

The second part of the sum can be obtained from the approximation to
the GPD. Following Bollerslev and Todorov (2011b) I assume that for a large
threshold value the following approximation holds with equality:

1−
v̄+
ψ (u+ x)

v̄+
ψ (x)

= G(u;σ+, ξ+)

where G() denotes a GPD. Assuming that x = tr+, u = ek − 1 − tr+ and
tr+ = 0.075, it is quite straight forward that:

v̄+
ψ (ek − 1) =

[
1−G

(
ek − 1− tr+;σ+, ξ+

)]
v̄+
ψ

(
tr+
)

EQUITY PREMIUM DERIVATION

Appendix E - Filters

1. Removing contracts with zero time value

2. Removing contracts that violate convexity

3. Removing contracts that violate monotonicity

4. Removing options with identical delta

5. Removing options with delta [0.01 0.99]
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Appendix F - Rolling Window correlations
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Figure 8: Time varying correlations of VRP(Tr) and VRP(0.9) for di�erent pairs
of indices. R-pearson coe�cient calculated for the past 50 weekly observations.
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Appendix G - Estimation results for VRP(0.9) and VRP Tr

Indices Variable Corr λ1 λ2

S&P500; FTSE100
VRP Tr

02443 0.0101 0.9280
0.0651 0.0071 0.0878

VRP(0.9)
0.7081 0.0656 0.5419
0.0978 0.3243 5.3576

S&P500; Eurostoxx50
VRP Tr

06462 0.0290 0.5449
0.1895 0.0315 0.2743

VRP(0.9)
0.7034 0.0101 0.7318
0.1426 0.0204 0.1471

FTE100;Eurostoxx50
VRP Tr

0.6198 0.0078 0.8983
0.2476 0.0230 0.1007

VRP(0.9)
0.7342 0.0343 0.6511
0.2000 0.1010 0.1404

Table 12: Dynamic Conditional Correlation coe�cients

Appendix H - Investor Fear Indice correlation and both sided VRP
Tr

r-Pearson Kendall τ

VRP(Tr-2) FI VRP(Tr-2) FI
S&P500 FTSE100 0.8119 0.9364 0.4058 0.7385

S&P500 Eurostoxx50 0.8162 0.9199 0.4950 0.7279
FTSE100 Eurostoxx50 0.9413 0.9435 0.6192 0.7562

Table 13: Pairwise correlations of the VRP(Tr-2), truncated from both sides,
and FI, based on the weekly data.
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